
Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 11, Issue 2; April-June, 2024, pp. 37-44
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

The Usage of Machine Learning to Predict
Outcomes in Diverse Areas such as the Annual

Water Consumption of a Country and the
Coefficient of Drag of Vehicles

Aditya Ganesh

Dubai College, Dubai, UAE
E-mail: 001adityaganesh@gmail.com

Abstract—Machine Learning is a fascinating and rapidly growing
field that is projected to show an annual growth rate of 36.08% until
20301. This paper introduces an outline of Machine Learning and
explains the core mathematics behind one of its most common
models. The paper then reviews its ability and efficacy in predicting
outcomes when given certain factors, using very different data sets,
evaluating the model’s ability to adapt to the vastly different data,
and comparing the outcomes and implementation of the model.

INTRODUCTION
Machine Learning is a fascinating field that is a subset of
artificial intelligence (AI) and focuses on allowing systems to
learn, improve, and develop their ‘understanding’ from
experience without being explicitly programmed2. In machine
learning, algorithms are trained to recognize patterns, make
predictions, or perform tasks without being explicitly
programmed for each scenario3.

There are several types of machine learning algorithms. One
of them includes supervised learning; in this type of learning,
the algorithm is trained on a labeled dataset, where each input
is paired with the correct output4. The algorithm then trains
itself on this data and learns to map inputs to outputs, enabling
it to make predictions on new, unseen data5. Unsupervised
learning - another machine learning algorithm - is where the
algorithm is given unlabeled data and tasked with finding
patterns or structures within it6. Semi-supervised learning -
which this paper will be focusing on - is a combination of both
aforementioned types of algorithms; the algorithm is trained
on a dataset containing both labeled and unlabeled data7. It

1 Statista. Machine Learning - Worldwide (2024)
2 Brown, S. Machine learning, explained (2021)
3 Undeartanding Machine Learning (ML) (n.d.)
4 What is supervised learning? (n.d.)
5 ibid
6 What is unsupervised learning? (n.d.).
7 Bergmann, D. What is semi-supervised learning? (2023)

learns from the unlabeled data to improve its performance
whilst also using the labeled data to make predictions8.

The mathematics behind the model
There are many approaches to machine learning, one of them
being random initialization. Let's take the linear function
𝑓(𝑥) = 𝑊𝑥 + 𝑏9. To find the optimal parameters in this
method, we randomly initialize or guess the values of 𝑊, the
weights, and 𝑏, the bias10. This just means assigning random
values to these parameters without any prior knowledge. Once
we’ve used these guesses, we use the model to make
predictions based on training, validation and testing data. We
can then evaluate the performance of the model using metrics
such as mean squared error in order to assess the accuracy of
the model11. Based on the performance of the model, we can
adjust the parameters 𝑊 and 𝑏 and repeat the process. We can
then repeatedly make informed guesses based on the
performance of the model in order to make it more accurate as
needed. Even though this method could be a useful initial
introduction into the field, it is not a scalable or efficient
process.

The more accurate approach to machine learning is using
techniques such as gradient descent in order to minimize a loss
function, and this is the method that this paper will be
utilizing. A loss function in machine learning quantifies how
well the model’s predictions match the real answers12. The
primary objective of machine learning is to identify the
parameters mentioned before that minimize the loss function.
We aim to minimize the loss function as it makes the model’s
predictions as close as possible to the true values13. The

8 ibid
9 Kumar, A. Neural Network (2019)
10 ibid
11 ibid
12 Arslan, E. what does The Loss (Cost) Function mean in Deep Learning
(2023)
13 ibid

Aditya Ganesh

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 11, Issue 2; April-June, 2024

38

process of finding the parameters that minimize the loss
function is commonly referred to as optimization14. Various
optimization algorithms can be used to reduce the loss
function and find the best parameters, one of the most popular
algorithms being gradient descent, which iteratively updates
the parameters in the opposite direction of the gradient of the
loss function, helping minimize the loss function and getting
closer and closer to the true values15. The gradient of the loss
function points in the direction of the steepest increase in the
loss function16. By moving along the function in the opposite
direction, we decrease the loss, as can be seen by the graph
below that helps visualize this (this image has been taken from
Google for Developers)17. The learning rate parameter controls
the size of the steps taken during this process18. If the learning
rate parameter is too large, it can cause the model to overshoot
the true value and not minimize its loss function, causing the
loss to start increasing as it goes past the minimum point of
the curve. On the other hand, a parameter that is too small can
make the model too slow. A typical loss function is mean
squared error.

In order to approximate a general 1-dimensional function f(x),
we say that 𝑓௔௣௣௥௢௫(𝑥) = 𝜙(𝑊௟ 𝜙 (𝑊௟ିଵ𝜙 (. . . 𝑊ଵ𝑥 + 𝑏ଵ) +

 𝑏௟ିଵ) + 𝑏௟) , where 𝜙 is a non-linear function like 𝜙(𝑥) =
 𝑚𝑎𝑥(0, 𝑥). The input, 𝑥, is the independent variable
representing the input data. This neural network has multiple
layers (𝑙 layers). Within each layer, after performing the linear
transformation 𝑊௜𝑥 + 𝑏௜, the result is passed through the
non-linear function 𝜙. This is a ReLU (rectified linear unit)
function, where 𝜙(𝑥) = 𝑚𝑎𝑥(0, 𝑥). ReLU is a common
activation function in neural networks, as it introduces a
simple non-linearity to the model to help with the learning
process19. Within each layer 𝑙,the expression represents a

14 Machine Learning Optimization - Why is it so Important? (2021)
15 Arslan, E. what does The Loss (Cost) Function mean in Deep Learning
(2023)
16 Reducing Loss: Gradient Descent (n.d.)
17 ibid
18 Reducing Loss: Learning Rate (n.d.)
19 Krishnamurthy, B. An Introduction to the ReLU Activation Function;
26/02/2024

series of linear transformations followed by non-linear
transformations. In a neural network, there are multiple hidden
layers. Each neuron in a hidden layer receives inputs from all
the neurons in the previous layers. 𝑊௜ represents the weight
matrix associated with the 𝑖th layer, and 𝑏௜ is the bias vector
for the 𝑖th layer20. The linear transformation 𝑊௜𝑥 + 𝑏௜
involves multiplying the input 𝑥 with the weight matrix and
then adding the bias vector to it. The final output is
𝑓௔௣௣௥௢௫(𝑥) , which is the approximation of the original
function 𝑓(𝑥).

We then iteratively adjust the parameters 𝑊௜ and 𝑏௜ to better
approximate the true function of 𝑓(𝑥): 𝑊௜

௧ାଵ = 𝑊௜
௧ −

 𝜖
ௗ௟

ௗௐ೔
 |ௐ೔

೟ ; 𝑏௜
௧ାଵ = 𝑏௜

௧ − 𝜖
ௗ௟

ௗ௕೔
|௕೔

೟ . 𝑙 is the loss function

(such as 𝑙 = [𝑓(𝑥) − 𝑓௔௣௣௥௢௫(𝑥; 𝑊௜
௧ , 𝑏௜

௧)]ଶ) and 𝜖 is the
learning rate. In this process, the parameters 𝑊௜and 𝑏௜ of the
neural network are adjusted iteratively to improve the
approximation of the true value of the function 𝑓(𝑥). The
parameters 𝑊௜

௧ and 𝑏௜
௧ represent the updated parameters at the

iteration 𝑡, whilst the parameters 𝑊௜
௧ାଵ and 𝑏௜

௧ାଵ represent the
updated parameters at the next iteration, 𝑡 + 1. The updated
parameters are determined, as mentioned before, by analyzing
the gradient of the loss function with respect to the parameters

(
ௗ௟

ௗௐ೔
 and

ௗ௟

ௗ௕೔
), and moving in the opposite direction of the

gradient in order to minimize the loss function 𝑙. The learning
rate 𝜖 controls the size of the steps taken during the parameter
‘updates’. The loss function 𝑙 measures the difference between
the true function 𝑓(𝑥) and the approximation of the function
𝑓௔௣௣௥௢௫(𝑥; 𝑊௜ , 𝑏௜). The loss function mentioned above (𝑙 =

[𝑓(𝑥) − 𝑓௔௣௣௥௢௫(𝑥; 𝑊௜
௧ , 𝑏௜

௧)]ଶ) is the squared difference
between the approximated and true function. This entire
process is repeated until the approximation of the function
𝑓௔௣௣௥௢௫ gets sufficiently close to the true function 𝑓(𝑥).
Similar models can also be used for multi-dimensional data.
When multiple dimensions make it very complex
computationally to deal with high-dimensional data, networks
can reduce the dimensionality in order to make all the data
uniform and to make it easier to deal with it.

Now let us take a look at our first test that we will be doing
with the model. We will be investigating the effectiveness of
the model in predicting the drag coefficient of a vehicle after
being given certain information about the vehicle, including
height, width and frontal area. Usually, in order to calculate
the drag coefficient of a vehicle, you would use the equation

𝐶஽ =
ிವ

ఘ஺
ೇమ

మ

 , where 𝐶஽ is the drag coefficient, 𝐹஽ is the drag

force, 𝐴 is the reference area, 𝜌 is the density of the fluid and
𝑉 is the velocity of the object21. With the model that we have
created, we are first going to see if the model can pick up any
patterns or relationships between the height, width and frontal

20 Sarita. Basic Understanding of Neural Network Structure; 03/10/2023
21 Drag Coefficient; n.d

The Usage of Machine Learning to Predict Outcomes in Diverse Areas such as the Annual Water Consumption of a 39
Country and the Coefficient of Drag of Vehicles

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 11, Issue 2; April-June, 2024

area of many cars in relation to their drag coefficient and see if
the model can predict the drag coefficient of other vehicles.

Setting up the model
A sample of some of the first data set given to the model is
below:

Make

Model

Year

Height

(In)

Width

(In)

Frontal

Area

(ft^2)

Cd

Acura Integra 1994 - 2001 51.9 66.7 19.5 0.32

Audi A8 1994 - 2002 56.6 74 24.22 0.28

BMW 7-series 1994 - 2001 56.1 73.3 23.79 0.30

Chevrolet Cavalier 1995 - 2005 53.2 67.4 20.2 0.36

All data has been taken from EcoModder22.

This is a sample of 4 of the 307 cars’ data that is used in the
experiment. As can be seen, none of the actual data that is
mathematically required to calculate the drag coefficient (the
actual data being drag force, reference area, density of the
fluid, and velocity of the object) is present. We want the
model to find relationships between the drag coefficient and
these characteristics of the vehicles in order to predict the drag
coefficients of other vehicles without the model knowing what
the answer is. The features that we use to predict it are height,
width, frontal area, and the coefficient of drag. The make,
model, and year of the vehicle are just to help our
visualization of the data but will not be used by the program.

To start setting up the machine learning algorithm, we have to
import packs such as NumPy23 and PyTorch24 onto Python25.
The first thing we do is split the data up into three sections:
training data, validation data and testing data. The purpose of
the training data is for the model to learn any patterns and
relationships present in the data. The model adjusts its
parameters during the process using gradient descent in order
to minimize the loss function. At the end of the training, the
model is expected to have identified underlying patterns in
order to make predictions. The purpose of the validation data
is to evaluate the performance of the model during the
training. After each training iteration, the model’s
performance is evaluated using the validation data, allowing
for the evaluation of the model’s performance on unseen data.
The validation data helps the model choose the best
parameters that produce the most accurate and precise
outcome. The purpose of the testing data is to provide an
unbiased evaluation of the final model. Its performance is

22 EcoModder. Vehicle Coefficient of Drag List; n.d.
23 Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming
with NumPy; 16/09/2020. Nature 585, 357–362
24 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al.
PyTorch: An Imperative Style, High-Performance Deep Learning; 2019. p.
8024–35.
25 Van Rossum G, Drake Jr FL. Python reference manual; 1995.

tested using the testing data and is only used at the end of the
development process of the model. The testing data will give
an overall estimate of how well the model will perform on
unseen, new data.

As can be seen by the code, the data is split up into 90%
training data, 5% validation data, and 5% testing data. There is
no specific split for the amount of data for each subset, but this
particular split is quite common for machine learning models.
By allocating a large amount of data (90%) to the training
subset, the model has a sufficient amount of data to learn the
patterns and connections within the data, which can lead to
better performance. The rest of the data is evenly split between
validation and testing, which will ensure that the model can
evaluate and test itself with sufficient data.

We then scale the data in order to standardize the data by
calculating the mean of each column of training, validation,
and testing data as well as the standard deviation of each
column of training, validation, and testing data. The same
process is done for each set of data. For example, we do the
following to the training data:

We then calculate the mean subtracted from the value divided

by the standard deviation for each column (
௩௔௟௨௘ ି ఓ

ఙ
) - this is

called z-score normalization, also known as standardization26.

This transformation results in a distribution of the data with a
mean of 0 and a standard deviation of 1. It centers the data
around 0 and also scales it to have a unit variance. This is
useful when the features have different units or scales, as does

26 Codecadamy Team. Normalization; n.d.

Aditya Ganesh

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 11, Issue 2; April-June, 2024

40

the height, width, frontal area and drag coefficient. It brings
them onto a common scale and makes them easier to compare
and so that each feature is of equal importance27.

We then have to extract certain features from our data in order
to make it easier for the model to train and use the data.

For the features, the code slices the arrays with [: , 1 :],
which extracts the features from all the rows and columns
starting from index 1. It considers all the data except for that
from the first column, which contains the coefficient of drag
for every vehicle, the outcome we are trying to predict. For the
output, the code slices the arrays with [: , 0], which only
extracts data from the first column, containing the target
output (the drag coefficient).

Next, we have to determine the dimensions of our data and set
up the model.

The line defining n_features calculates the number of features
in the training dataset. ‘n_hidden=20’ specifies the number of
neurons in the hidden layer of an MLP (multi-layer
perceptron) neural network. In this type of neural network, the
hidden layers are intermediary layers between the input and
output layers28. They are responsible for the model learning
the different patterns and connections in the data. The number
of hidden layers we have defined here is 10. ‘n_embd = 1’
specifies the dimensionality of the output embedding. It is
defined as 1, setting the dimensionality of the output
embedding to 1, meaning that the output will be a scalar value.
We then come to the next part of the code where we define the

27 Codecadamy Team. Normalization; n.d.
28 Hidden Layer; n.d.

code using PyTorch’s ‘nn.Sequential’ module. It is a module
that is used to sequentially stack layers or modules one after
the other, allowing us to create a neural network model29. In
line 1, we are creating a linear transformation layer that maps
the input features to the hidden layer. ‘N_features’ represents
the number of input features and ‘n_hidden’ represents the
number of neurons in the hidden layer. This layer applies a
linear transformation to the input features, where each of the
features is multiplied by a weight and then summed together,
and biases are also included here. Line 2 runs the data through
the ReLU activation function, and finally, line 3 creates
another linear transformation layer that maps the output of the
hidden layer to the output layer. It also contains bias terms,
producing the final output of the model.

The next steps in setting up the model include looking at the
actual iteration of the parameters and introducing our loss
functions where the model can go through the process of
gradient descent.

We first create a loop that iterates over the parameters of the
model. ‘Parameters’ contains a list of all the parameters in the
model, including weights and biases of the neural network
layers. By setting ‘requires_grad’ to true, we enable the model
to track the gradients for these parameters, allowing them to
be continually updated throughout the training process. Next,
we define the training loss and the optimizer. Line 1
introduces the mean squared error (MSE) loss function, which
is commonly used in machine learning to compute the mean
squared difference between the target and the predicted
values30. During the training process of this model, the goal
will be to minimize this loss function in order to get as close
as possible to the target value. Line 2 initializes the optimizer
in order to train the model. ‘optim.SGD’ introduces the actual
gradient descent segment of this mode, introducing the
stochastic gradient descent (SGD) optimizer31. Line 2 also
provides the parameters of the model that need to be
optimized, and it also provides the learning rate. The learning
rate, as mentioned before, determines the size of the steps to
be taken during the optimization process. The SGD optimizer
updates the parameters of the model based on the gradients
calculated - as well as based on the learning rate - in order to
minimize the loss function.

The next step in the model is to set up the model for training.

29 Sequential; n.d.
30 Alake, R. Loss Functions in Machine Learning ExplainedI; 11/2023
31 SGD; n.d.

The Usage of Machine Learning to Predict Outcomes in Diverse Areas such as the Annual Water Consumption of a 41
Country and the Coefficient of Drag of Vehicles

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 11, Issue 2; April-June, 2024

First, the code sets the batch size to 32, which dictates how
many samples are processed together in one iteration of
training, influencing both the speed and the stability of
learning32. The number 32 is commonly used as it balances
computational efficiency and the accuracy of the gradient
descent process33. The next step generates random indices to
select a subset of training data (‘batch_data’), ensuring the
input is of the type ‘float32’. This creates variability in the
training process to help the model generalize better. Finally, in
step 3, the batch data is fed through the model’s first layer,
undergoing a transformation by the layer’s weights. The
output is then passed through a ReLU activation function,
introducing non-linearity by setting negative values to zero.
This step prepares the data for further processing by adding
the capability to capture complex patterns, with
first_layer_activation holding the resulting activated output.

Finally, we test the model with the training and the validation
data.

32 Brownlee, J. How to Control the Stability of Training Neural Networks With
the Batch Size; 28/08/2020
33 ibid

In this cell, PyTorch modules for core functionalities such as
for the neural network layers and the optimization algorithms
are imported. The number of iterations is then set to 100,000
and the batch size is set to 32. Additionally, two lists,
‘train_loss_list’ and ‘val_loss_list’, are initialized to keep
track of the training and validation loss at each iteration. The
code then moves onto the main part of the machine learning
process: the training loop. It iterates 100,000 times, first
selecting a random batch from the training set and then
performing a forward pass to compute predictions (a forward
pass is just the computation of the output from the input
through all layers, applying weights and activation functions).
Next, it calculates the loss by comparing the predictions
against the true labels and conducts a backward pass to
compute the gradients (a backward pass calculates and
propagates gradients from the output back to the input,
updating model weights based on loss differentiation). It then
updates the model weights using the optimizer and
periodically evaluates the model on a validation set to
calculate the validation loss, without computing gradients.
Finally, it prints the training and validation loss, enabling us to
find trends.

Evaluating the model
Upon the first review of the results, the training data does not
seem to have much consistency. There does not seem to be
much stabilization and there is a lot of noise and variance as
the loss keeps fluctuating with no general rate. The batch size
was then switched to 64, and with this the model worked
much better. With the learning rate set to 0.01, the batch size
set to 64, and the number of iterations set to 100,000, the
training loss seems to vary between 0.3 and 2.3, with great
fluctuations in the training loss and with no trend coming
down to its minimum loss. Contrastingly, the validation loss is
consistently lower, between 0.198 and 0.200. We want this
loss to be as minimal as possible.

To visualize the training and the validation loss, we can write
a short program to plot this information on a graph:

With the current settings of a learning rate of 0.01, a batch size
of 64 and the number of iterations set to 100000, the model
produces a graph like the one attached below. It shows that the
training loss is not consistent whatsoever, and has major
fluctuations as the number of iterations progresses. The
training loss does not become consistently lower, highlighting

Aditya Ganesh

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 11, Issue 2; April-June, 2024

42

that the model cannot find many links or patterns between the
provided data for predicting the drag coefficient. The
validation loss, however, starts off positively. It initially starts
to decrease as the number of iterations increases, but then the
validation loss decreases at an extremely low rate as the
number of iterations increases. The validation loss decreases
minimally over time and reaches a minimum of 0.198.

However, we can vary factors like the learning rate and see
what effect it has on the outcome. Changing the learning rate
from 0.01 to 0.001 makes the optimization process more
gradual and precise, theoretically leading to improved training
stability and accuracy but at the cost of longer training time as
well as potentially overshooting the minimum loss. Doing,
this, we still receive similar results - the graph looks very
similar to the previous graph. The training data loss still has
very large fluctuations within a similar range as before;
however, the validation loss is marginally less accurate as it is
slightly higher compared to when the learning rate was 0.01
(the lowest loss it outputs is 0.199). The range of the
validation loss is lower as the initial loss is lower compared to
the previous graph.

When further reducing the learning rate to 0.0001, the training
loss as well as the validation loss both have a similar pattern,
and the validation loss falls to the lowest of 0.197. When
decreasing the learning rate even further to 0.00001, the
training and validation loss, when plotted, produces a graph
below. The training loss decreases as the number of iterations
increases as well as is a bit more consistent. The validation
loss, however, sees the biggest change; the validation loss

reduces the most over time, having a much more prominent
gradient function compared to the gradient functions of the
other graphs. The validation loss decreases to the lowest of
0.193.

Decreasing the learning rate further to 0.000001 produces a
graph below, where the training and validation loss are both
relatively constant and do not change. The validation loss line
does not change and stays constant at 0.202. This tells us that
for this model with this specific data, a learning rate of
0.00001 is the most ideal learning rate as it produces the
lowest loss in predicting the coefficient of drag, which is our
target.

Now, we can adjust the number of iterations and keep
everything else constant (batch size 64 and learning rate
0.00001). When decreasing the number of iterations from
100,000 to 10,000, the training loss is more consistent,
however, there is still a lot of noise and variance in the
training loss. The validation loss is much higher, with the
lowest validation loss at 0.336. When further decreasing the
number of iterations to 1000, the trends stay the same but the
lowest validation loss comes to 0.224. There is no maximum
number of iterations, but 100,000 is pretty high, and an
iteration size above this would be too time-consuming (~10
minutes). Testing at 1,000,000 iterations, the validation loss
only comes down to a minimum of 0.199 which is quite
inefficient.

After testing the model with various hyperparameters, we can
conclude that for predicting the drag coefficient of vehicles,

The Usage of Machine Learning to Predict Outcomes in Diverse Areas such as the Annual Water Consumption of a 43
Country and the Coefficient of Drag of Vehicles

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 11, Issue 2; April-June, 2024

the optimal hyperparameters that produce the lowest loss of
0.193 are a learning rate of 0.00001, a batch size of 64, and a
number of iterations of 100000. This tells us that the model is
fairly accurate in predicting the drag coefficient of vehicles.
By being able to predict the coefficient of drag with just
height, width, and frontal area, the model can be used by
manufacturers and aerodynamicists during the early design
stages of the car to “model all of the complex dependencies of
drag on shape, inclination, and some flow conditions”34.

Second model
We can also test this model on completely different data; we
can try to use population, GDP, and inflation to predict the
yearly water used by a country. Below is a sample of the data
for 4 out of 186 countries that will be used by the model.

Country Yearly Water
Used (m³,

thousands of
liters)

Population GDP
(nominal)

Inflation

Argentina 37780000000 45510318 632770000000 94.8

Belgium 6005000000 11655930 578604000000 9.6

India 761000000000 1417173173 3385090000000 6.7

New
Zealand

5201000000 5185288 247234000000 7.2

All data is from 2022. Yearly Water Used (m³, thousands of liters) taken from
Worldometer35, Population and GDP (nominal) taken from Worldometer36,
and Inflation taken from WorldData37.

After setting up the model in the same way, we can analyze
the results. After testing for the optimal hyperparameters by
using the same process when finding them for the coefficient
of drag prediction, the optimal hyperparameters found are a
learning rate of 0.0001, a batch size of 64, and a number of
iterations of 100000, we receive the results below.

34 Benson, T. The Drag Coefficient; n.d.
35 Worldometer. Water Use Statistics; n.d.
36 Worldometer. GDP by Country; n.d.
37 WorldData. Inflation rates in a global comparison; n.d.

The training data for predicting the annual water consumption
has much less consistency as compared to the training data for
predicting the coefficient of drag. The range of results is much
larger, generally ranging from 0.07 - 4.00. However, there are
some very large spikes going all the way up to 6.5 and there
does not seem to be much stabilization, and there is much
more noise and variance as the loss keeps fluctuating.
However, both the training loss and the validation loss
decrease over time. Unlike the other model, the validation loss
is higher than the minimum training loss, but the validation
loss is much lower than that of the validation loss with the
drag coefficient. There, the lowest validation loss was 0.193,
however here the lowest validation loss is 0.0391. This is
significantly lower, which tells us that the model can
effectively predict with very little uncertainty the annual water
consumption of a country given the factors of population,
GDP, and inflation. The high accuracy in these predictions can
help economists predict water consumption before official
statistics are released, and help governments prepare policies
and responses to the statistics.

CONCLUSION
The results show that the model can successfully predict the
outcomes in two vastly different fields given factors not
directly correlated to the outcome, although at different levels:
the model can predict water consumption given some factors
(population, GDP (nominal), and inflation) at a much higher
accuracy and precision than predicting the coefficient of drag
given some factors (height, weight, and frontal area). This
could be due to various reasons, including a possibly more
accurate data set (sources such as Worldmeter and WorldData
are more accurate than sources such as EcoModder) and a
greater feature relevance (features such as population are more
directly linked to water consumption compared to features
such as height to the coefficient of drag). The minimum loss
when predicting the coefficient of drag is 0.193 which is
nearly 5 times larger than the minimum loss when predicting
the annual water consumption.

ACKNOWLEDGMENTS
Throughout the composition of this research review, I am
extremely grateful to Mr Sandip Roy, who is currently
pursuing a PhD in Physics from Princeton University, Jadwin
Hall, Princeton NJ, USA. I am very thankful for his continued
mentorship and support as I pursued this research from the
Summer of 2023 until the Spring of 2024.

BIBLIOGRAPHY
1) Alake, R. (2023) Loss Functions in Machine Learning

Explained | DataCamp. Available at:
https://www.datacamp.com/tutorial/loss-function-in-machine-
learning. (Accessed: 31 March 2024).

2) Arslan, E. (2023) what does The Loss (Cost) Function mean in
Deep Learning | Medium. Available at:
https://medium.com/@erhan_arslan/what-does-the-loss-cost-
function-mean-in-deep-learning-
71911d14f7a2#:~:text=A%20loss%20function%20quantifies%2

Aditya Ganesh

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 11, Issue 2; April-June, 2024

44

0how,predicted%20values%20and%20actual%20values.
(Accessed: 31 March 2024).

3) Benson, T. (no date) The Drag Coefficient | Glenn Research
Center, Nasa. Available at: https://www.grc.nasa.gov/www/k-
12/VirtualAero/BottleRocket/airplane/dragco.html. (Accessed:
31 March 2024).

4) Bergmann, D. (2023) What is semi-supervised learning? | IBM.
Available at: https://www.ibm.com/topics/semi-supervised-
learning#:~:text=Semi%2Dsupervised%20learning%20is%20a,f
or%20classification%20and%20regression%20tasks. (Accessed:
31 March 2024).

5) Brown, S. (2021) Machine Learning, explained | MIT Sloan.
Available at: https://mitsloan.mit.edu/ideas-made-to-
matter/machine-learning-explained. (Accessed: 31 March 2024).

6) Brownlee, J. (2020) How to Control the Stability of Training
Neural Networks With the Batch Size | Machine Learning
Mastery. Available at: https://machinelearningmastery.com/how-
to-control-the-speed-and-stability-of-training-neural-networks-
with-gradient-descent-batch-size/. (Accessed: 31 March 2024).

7) Codecadamy Team. (no date) Normalization | Codecademy.
Available at:
https://www.codecademy.com/article/normalization. (Accessed:
31 March 2024).

8) Drag Coefficient (no date) | Glenn Research Center, Nasa.
Available at: https://www1.grc.nasa.gov/beginners-guide-to-
aeronautics/drag-coefficient-2/#determining-value-for-drag-
coefficient. (Accessed: 31 March 2024)

9) Harris, C.R., Millman, K.J., van der Walt, S.J. et al. (2020)
Array programming with NumPy | Nature 585, 357–362. DOI:
10.1038/s41586-020-2649-2. Available at:
https://www.nature.com/articles/s41586-020-2649-2. (Accessed:
31 March 2024).

10) Krishnamurthy, B. (2024) An Introduction to the ReLU
Activation Function | BuiltIn. Available at:
https://builtin.com/machine-learning/relu-activation-function.
(Accessed: 31 March 2024).

11) Kumar, A. (2019) Neural network | Medium. Available at:
https://towardsdatascience.com/neural-network-74f53424ba82.
(Accessed: 31 March 2024).

12) Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et
al. (2019) PyTorch: An Imperative Style, High-Performance
Deep Learning Library | Advances in Neural Information
Processing Systems 32. Curran Associates, Inc.; 2019. p. 8024–
35. Available at: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.
(Accessed: 31 March 2024).

13) Reducing loss: Gradient descent, Machine Learning (no date) |
Google for Developers, Google. Available at:
https://developers.google.com/machine-learning/crash-
course/reducing-loss/gradient-
descent#:~:text=The%20gradient%20always%20points%20in,d
escent%20relies%20on%20negative%20gradients. (Accessed:
31 March 2024).

14) Reducing Loss: Learning Rate, Machine Learning (no date) |
Google for Developers, Google. Available at:
https://developers.google.com/machine-learning/crash-
course/reducing-loss/learning-rate. (Accessed: 31 March 2024).

15) ReLU activation function explained (no date) | Built In.
Available at: https://builtin.com/machine-learning/relu-
activation-
function#:~:text=The%20rectified%20linear%20unit%20(ReLU
)%20or%20rectifier%20activation%20function%20introduces,a
ctivation%20functions%20in%20deep%20learning. (Accessed:
31 March 2024).

16) Seldon. (2023) Machine learning optimization - why is it so
important? | Seldon. Available at:
https://www.seldon.io/machine-learning-optimisation.
(Accessed: 31 March 2024).

17) Sequential (no date) | PyTorch. Available at:
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.ht
ml. (Accessed: 31 March 2024).

18) Statista. (2024) Machine Learning - Worldwide | Statista.
Available at: https://www.statista.com/outlook/tmo/artificial-
intelligence/machine-learning/worldwide (Accessed: 31 March
2024).

19) SGD (no date) | PyTorch. Available at:
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html.
(Accessed: 31 March 2024).

20) Understanding Machine Learning (ML) (no date) | Alpine AI.
Available at: https://alpineai.swiss/en/glossary/machine-
learning-ml/. (Accessed: 31 March 2024).

21) Van Rossum G, Drake Jr FL. (1995) Python reference manual |
Centrum voor Wiskunde en Informatica Amsterdam. Available
at: https://ir.cwi.nl/pub/5008/05008D.pdf. (Accessed: 31 March
2024).

22) Vehicle Coefficient of Drag List (no date) | EcoModder.
Available at:
https://ecomodder.com/wiki/Vehicle_Coefficient_of_Drag_List.
(Accessed: 31 March 2024).

23) What is supervised learning? (no date) | Google Cloud, Google.
Available at: https://cloud.google.com/discover/what-is-
supervised-
learning#:~:text=Supervised%20learning%20is%20a%20catego
ry,the%20input%20and%20the%20outputs. (Accessed: 31
March 2024).

24) What is unsupervised learning? (no date) | Google Cloud,
Google. Available at: https://cloud.google.com/discover/what-is-
unsupervised-
learning#:~:text=Unsupervised%20learning%20in%20artificial
%20intelligence,any%20explicit%20guidance%20or%20instruct
ion. (Accessed: 31 March 2024).

25) WorldData. (no date) Inflation rates in a global comparison |
WorldData. Available at:
https://www.worlddata.info/inflation.php. (Accessed: 31 March
2024).

26) Worldometer. (no date) GDP by Country | Worldometer.
Available at: https://www.worldometers.info/gdp/gdp-by-
country/. (Accessed: 31 March 2024).

27) Worldometer. (no date) Water Use Statistics | Worldometer.
Available at: https://www.worldometers.info/water/ (Accessed:
31 March 2024).

