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Abstract—Machine Learning is a fascinating and rapidly growing 
field that is projected to show an annual growth rate of 36.08% until 
20301. This paper introduces an outline of Machine Learning and 
explains the core mathematics behind one of its most common 
models. The paper then reviews its ability and efficacy in predicting 
outcomes when given certain factors, using very different data sets, 
evaluating the model’s ability to adapt to the vastly different data, 
and comparing the outcomes and implementation of the model. 

INTRODUCTION 
Machine Learning is a fascinating field that is a subset of 
artificial intelligence (AI) and focuses on allowing systems to 
learn, improve, and develop their ‘understanding’ from 
experience without being explicitly programmed2. In machine 
learning, algorithms are trained to recognize patterns, make 
predictions, or perform tasks without being explicitly 
programmed for each scenario3.  

There are several types of machine learning algorithms. One 
of them includes supervised learning; in this type of learning, 
the algorithm is trained on a labeled dataset, where each input 
is paired with the correct output4. The algorithm then trains 
itself on this data and learns to map inputs to outputs, enabling 
it to make predictions on new, unseen data5. Unsupervised 
learning - another machine learning algorithm - is where the 
algorithm is given unlabeled data and tasked with finding 
patterns or structures within it6. Semi-supervised learning - 
which this paper will be focusing on - is a combination of both 
aforementioned types of algorithms; the algorithm is trained 
on a dataset containing both labeled and unlabeled data7. It 

 
1 Statista. Machine Learning - Worldwide (2024) 
2 Brown, S. Machine learning, explained (2021) 
3 Undeartanding Machine Learning (ML) (n.d.) 
4 What is supervised learning? (n.d.) 
5 ibid 
6 What is unsupervised learning? (n.d.). 
7 Bergmann, D. What is semi-supervised learning? (2023) 

learns from the unlabeled data to improve its performance 
whilst also using the labeled data to make predictions8.  

The mathematics behind the model 
There are many approaches to machine learning, one of them 
being random initialization. Let's take the linear function 
𝑓(𝑥) = 𝑊𝑥 + 𝑏9. To find the optimal parameters in this 
method, we randomly initialize or guess the values of 𝑊, the 
weights, and 𝑏, the bias10. This just means assigning random 
values to these parameters without any prior knowledge. Once 
we’ve used these guesses, we use the model to make 
predictions based on training, validation and testing data. We 
can then evaluate the performance of the model using metrics 
such as mean squared error in order to assess the accuracy of 
the model11. Based on the performance of the model, we can 
adjust the parameters 𝑊 and 𝑏 and repeat the process. We can 
then repeatedly make informed guesses based on the 
performance of the model in order to make it more accurate as 
needed. Even though this method could be a useful initial 
introduction into the field, it is not a scalable or efficient 
process.  

The more accurate approach to machine learning is using 
techniques such as gradient descent in order to minimize a loss 
function, and this is the method that this paper will be 
utilizing. A loss function in machine learning quantifies how 
well the model’s predictions match the real answers12. The 
primary objective of machine learning is to identify the 
parameters mentioned before that minimize the loss function. 
We aim to minimize the loss function as it makes the model’s 
predictions as close as possible to the true values13. The 

 
8 ibid 
9 Kumar, A. Neural Network (2019) 
10 ibid 
11 ibid 
12 Arslan, E. what does The Loss (Cost) Function mean in Deep Learning 
(2023) 
13 ibid 
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process of finding the parameters that minimize the loss 
function is commonly referred to as optimization14. Various 
optimization algorithms can be used to reduce the loss 
function and find the best parameters, one of the most popular 
algorithms being gradient descent, which iteratively updates 
the parameters in the opposite direction of the gradient of the 
loss function, helping minimize the loss function and getting 
closer and closer to the true values15. The gradient of the loss 
function points in the direction of the steepest increase in the 
loss function16. By moving along the function in the opposite 
direction, we decrease the loss, as can be seen by the graph 
below that helps visualize this (this image has been taken from 
Google for Developers)17. The learning rate parameter controls 
the size of the steps taken during this process18. If the learning 
rate parameter is too large, it can cause the model to overshoot 
the true value and not minimize its loss function, causing the 
loss to start increasing as it goes past the minimum point of 
the curve. On the other hand, a parameter that is too small can 
make the model too slow. A typical loss function is mean 
squared error.  

 
In order to approximate a general 1-dimensional function f(x), 
we say that 𝑓௔௣௣௥௢௫(𝑥)  =  𝜙(𝑊௟  𝜙 (𝑊௟ିଵ𝜙 (. . . 𝑊ଵ𝑥 + 𝑏ଵ)  +

 𝑏௟ିଵ)  +  𝑏௟) , where 𝜙 is a non-linear function like 𝜙(𝑥)  =
 𝑚𝑎𝑥(0, 𝑥). The input, 𝑥, is the independent variable 
representing the input data. This neural network has multiple 
layers (𝑙 layers). Within each layer, after performing the linear 
transformation 𝑊௜𝑥 +  𝑏௜, the result is passed through the 
non-linear function 𝜙. This is a ReLU (rectified linear unit) 
function, where 𝜙(𝑥)  =  𝑚𝑎𝑥(0, 𝑥). ReLU is a common 
activation function in neural networks, as it introduces a 
simple non-linearity to the model to help with the learning 
process19. Within each layer 𝑙,the expression represents a 

 
14 Machine Learning Optimization - Why is it so Important? (2021) 
15 Arslan, E. what does The Loss (Cost) Function mean in Deep Learning 
(2023) 
16 Reducing Loss: Gradient Descent (n.d.) 
17 ibid 
18 Reducing Loss: Learning Rate (n.d.) 
19 Krishnamurthy, B. An Introduction to the ReLU Activation Function; 
26/02/2024 

series of linear transformations followed by non-linear 
transformations. In a neural network, there are multiple hidden 
layers. Each neuron in a hidden layer receives inputs from all 
the neurons in the previous layers. 𝑊௜ represents the weight 
matrix associated with the 𝑖th layer, and 𝑏௜ is the bias vector 
for the 𝑖th layer20. The linear transformation  𝑊௜𝑥 + 𝑏௜ 
involves multiplying the input 𝑥 with the weight matrix and 
then adding the bias vector to it. The final output is 
𝑓௔௣௣௥௢௫(𝑥) , which is the approximation of the original 
function 𝑓(𝑥).  

We then iteratively adjust the parameters 𝑊௜ and 𝑏௜ to better 
approximate the true function of 𝑓(𝑥): 𝑊௜

௧ାଵ  =  𝑊௜
௧  −

 𝜖
ௗ௟

ௗௐ೔
 |ௐ೔

೟ ; 𝑏௜
௧ାଵ  = 𝑏௜

௧  −  𝜖
ௗ௟

ௗ௕೔
|௕೔

೟  . 𝑙 is the loss function 

(such as 𝑙 = [𝑓(𝑥) − 𝑓௔௣௣௥௢௫(𝑥; 𝑊௜
௧  , 𝑏௜

௧  )]ଶ ) and 𝜖 is the 
learning rate. In this process, the parameters 𝑊௜and 𝑏௜ of the 
neural network are adjusted iteratively to improve the 
approximation of the true value of the function 𝑓(𝑥). The 
parameters 𝑊௜

௧ and 𝑏௜
௧ represent the updated parameters at the 

iteration 𝑡, whilst the parameters 𝑊௜
௧ାଵ and 𝑏௜

௧ାଵ represent the 
updated parameters at the next iteration, 𝑡 + 1. The updated 
parameters are determined, as mentioned before, by analyzing 
the gradient of the loss function with respect to the parameters 

(
ௗ௟

ௗௐ೔
 and 

ௗ௟

ௗ௕೔
), and moving in the opposite direction of the 

gradient in order to minimize the loss function 𝑙. The learning 
rate 𝜖 controls the size of the steps taken during the parameter 
‘updates’. The loss function 𝑙 measures the difference between 
the true function 𝑓(𝑥) and the approximation of the function 
𝑓௔௣௣௥௢௫(𝑥; 𝑊௜  , 𝑏௜). The loss function mentioned above (𝑙 =

[𝑓(𝑥) − 𝑓௔௣௣௥௢௫(𝑥; 𝑊௜
௧  , 𝑏௜

௧  )]ଶ) is the squared difference 
between the approximated and true function. This entire 
process is repeated until the approximation of the function 
𝑓௔௣௣௥௢௫ gets sufficiently close to the true function 𝑓(𝑥). 
Similar models can also be used for multi-dimensional data. 
When multiple dimensions make it very complex 
computationally to deal with high-dimensional data, networks 
can reduce the dimensionality in order to make all the data 
uniform and to make it easier to deal with it.  

Now let us take a look at our first test that we will be doing 
with the model. We will be investigating the effectiveness of 
the model in predicting the drag coefficient of a vehicle after 
being given certain information about the vehicle, including 
height, width and frontal area. Usually, in order to calculate 
the drag coefficient of a vehicle, you would use the equation 

𝐶஽ =
ிವ

ఘ஺
ೇమ

మ

 , where 𝐶஽ is the drag coefficient, 𝐹஽ is the drag 

force, 𝐴 is the reference area, 𝜌 is the density of the fluid and 
𝑉 is the velocity of the object21. With the model that we have 
created, we are first going to see if the model can pick up any 
patterns or relationships between the height, width and frontal 

 
20 Sarita. Basic Understanding of Neural Network Structure; 03/10/2023 
21 Drag Coefficient; n.d 
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area of many cars in relation to their drag coefficient and see if 
the model can predict the drag coefficient of other vehicles.  

Setting up the model 
A sample of some of the first data set given to the model is 
below:  

Make 

 

 

Model 

 

 

Year 

 

 

Height 

(In) 

 

Width 

(In) 

 

Frontal 

Area 

(ft^2) 

Cd 

 

 

Acura Integra 1994 - 2001 51.9 66.7 19.5 0.32 

Audi A8 1994 - 2002 56.6 74 24.22 0.28 

BMW 7-series 1994 - 2001 56.1 73.3 23.79 0.30 

Chevrolet Cavalier 1995 - 2005 53.2 67.4 20.2 0.36 

All data has been taken from EcoModder22. 
 
This is a sample of 4 of the 307 cars’ data that is used in the 
experiment. As can be seen, none of the actual data that is 
mathematically required to calculate the drag coefficient (the 
actual data being drag force, reference area, density of the 
fluid, and velocity of the object) is present. We want the 
model to find relationships between the drag coefficient and 
these characteristics of the vehicles in order to predict the drag 
coefficients of other vehicles without the model knowing what 
the answer is. The features that we use to predict it are height, 
width, frontal area, and the coefficient of drag. The make, 
model, and year of the vehicle are just to help our 
visualization of the data but will not be used by the program.  

To start setting up the machine learning algorithm, we have to 
import packs such as NumPy23 and PyTorch24 onto Python25. 
The first thing we do is split the data up into three sections: 
training data, validation data and testing data. The purpose of 
the training data is for the model to learn any patterns and 
relationships present in the data. The model adjusts its 
parameters during the process using gradient descent in order 
to minimize the loss function. At the end of the training, the 
model is expected to have identified underlying patterns in 
order to make predictions. The purpose of the validation data 
is to evaluate the performance of the model during the 
training. After each training iteration, the model’s 
performance is evaluated using the validation data, allowing 
for the evaluation of the model’s performance on unseen data. 
The validation data helps the model choose the best 
parameters that produce the most accurate and precise 
outcome. The purpose of the testing data is to provide an 
unbiased evaluation of the final model. Its performance is 

 
22 EcoModder. Vehicle Coefficient of Drag List; n.d. 
23 Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming 
with NumPy; 16/09/2020. Nature 585, 357–362 
24 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. 
PyTorch: An Imperative Style, High-Performance Deep Learning; 2019. p. 
8024–35. 
25 Van Rossum G, Drake Jr FL. Python reference manual; 1995. 

tested using the testing data and is only used at the end of the 
development process of the model. The testing data will give 
an overall estimate of how well the model will perform on 
unseen, new data.  

  

As can be seen by the code, the data is split up into 90% 
training data, 5% validation data, and 5% testing data. There is 
no specific split for the amount of data for each subset, but this 
particular split is quite common for machine learning models. 
By allocating a large amount of data (90%) to the training 
subset, the model has a sufficient amount of data to learn the 
patterns and connections within the data, which can lead to 
better performance. The rest of the data is evenly split between 
validation and testing, which will ensure that the model can 
evaluate and test itself with sufficient data.  

We then scale the data in order to standardize the data by 
calculating the mean of each column of training, validation, 
and testing data as well as the standard deviation of each 
column of training, validation, and testing data. The same 
process is done for each set of data. For example, we do the 
following to the training data:  

 

We then calculate the mean subtracted from the value divided 

by the standard deviation for each column (
௩௔௟௨௘ ି ఓ

ఙ
) - this is 

called z-score normalization, also known as standardization26. 

 

This transformation results in a distribution of the data with a 
mean of 0 and a standard deviation of 1. It centers the data 
around 0 and also scales it to have a unit variance. This is 
useful when the features have different units or scales, as does 

 
26 Codecadamy Team. Normalization; n.d. 
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the height, width, frontal area and drag coefficient. It brings 
them onto a common scale and makes them easier to compare 
and so that each feature is of equal importance27. 

We then have to extract certain features from our data in order 
to make it easier for the model to train and use the data.  

 

For the features, the code slices the arrays with [ : , 1 : ], 
which extracts the features from all the rows and columns 
starting from index 1. It considers all the data except for that 
from the first column, which contains the coefficient of drag 
for every vehicle, the outcome we are trying to predict. For the 
output, the code slices the arrays with [ : , 0 ], which only 
extracts data from the first column, containing the target 
output (the drag coefficient). 

Next, we have to determine the dimensions of our data and set 
up the model. 

 

 

The line defining n_features calculates the number of features 
in the training dataset. ‘n_hidden=20’ specifies the number of 
neurons in the hidden layer of an MLP (multi-layer 
perceptron) neural network. In this type of neural network, the 
hidden layers are intermediary layers between the input and 
output layers28. They are responsible for the model learning 
the different patterns and connections in the data. The number 
of hidden layers we have defined here is 10. ‘n_embd = 1’ 
specifies the dimensionality of the output embedding. It is 
defined as 1, setting the dimensionality of the output 
embedding to 1, meaning that the output will be a scalar value. 
We then come to the next part of the code where we define the 

 
27 Codecadamy Team. Normalization; n.d. 
28 Hidden Layer; n.d. 

code using PyTorch’s ‘nn.Sequential’ module. It is a module 
that is used to sequentially stack layers or modules one after 
the other, allowing us to create a neural network model29. In 
line 1, we are creating a linear transformation layer that maps 
the input features to the hidden layer. ‘N_features’ represents 
the number of input features and ‘n_hidden’ represents the 
number of neurons in the hidden layer. This layer applies a 
linear transformation to the input features, where each of the 
features is multiplied by a weight and then summed together, 
and biases are also included here. Line 2 runs the data through 
the ReLU activation function, and finally, line 3 creates 
another linear transformation layer that maps the output of the 
hidden layer to the output layer. It also contains bias terms, 
producing the final output of the model. 

The next steps in setting up the model include looking at the 
actual iteration of the parameters and introducing our loss 
functions where the model can go through the process of 
gradient descent.  

 

We first create a loop that iterates over the parameters of the 
model. ‘Parameters’ contains a list of all the parameters in the 
model, including weights and biases of the neural network 
layers. By setting ‘requires_grad’ to true, we enable the model 
to track the gradients for these parameters, allowing them to 
be continually updated throughout the training process. Next, 
we define the training loss and the optimizer. Line 1 
introduces the mean squared error (MSE) loss function, which 
is commonly used in machine learning to compute the mean 
squared difference between the target and the predicted 
values30. During the training process of this model, the goal 
will be to minimize this loss function in order to get as close 
as possible to the target value. Line 2 initializes the optimizer 
in order to train the model. ‘optim.SGD’ introduces the actual 
gradient descent segment of this mode, introducing the 
stochastic gradient descent (SGD) optimizer31. Line 2 also 
provides the parameters of the model that need to be 
optimized, and it also provides the learning rate. The learning 
rate, as mentioned before, determines the size of the steps to 
be taken during the optimization process. The SGD optimizer 
updates the parameters of the model based on the gradients 
calculated - as well as based on the learning rate - in order to 
minimize the loss function.  

The next step in the model is to set up the model for training.  
 

29 Sequential; n.d. 
30 Alake, R. Loss Functions in Machine Learning ExplainedI; 11/2023 
31 SGD; n.d. 
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First, the code sets the batch size to 32, which dictates how 
many samples are processed together in one iteration of 
training, influencing both the speed and the stability of 
learning32. The number 32 is commonly used as it balances 
computational efficiency and the accuracy of the gradient 
descent process33. The next step generates random indices to 
select a subset of training data (‘batch_data’), ensuring the 
input is of the type ‘float32’. This creates variability in the 
training process to help the model generalize better. Finally, in 
step 3, the batch data is fed through the model’s first layer, 
undergoing a transformation by the layer’s weights. The 
output is then passed through a ReLU activation function, 
introducing non-linearity by setting negative values to zero. 
This step prepares the data for further processing by adding 
the capability to capture complex patterns, with 
first_layer_activation holding the resulting activated output. 

Finally, we test the model with the training and the validation 
data.  

 
 

32 Brownlee, J. How to Control the Stability of Training Neural Networks With 
the Batch Size; 28/08/2020 
33 ibid 

In this cell, PyTorch modules for core functionalities such as 
for the neural network layers and the optimization algorithms 
are imported. The number of iterations is then set to 100,000 
and the batch size is set to 32. Additionally, two lists, 
‘train_loss_list’ and ‘val_loss_list’, are initialized to keep 
track of the training and validation loss at each iteration. The 
code then moves onto the main part of the machine learning 
process: the training loop. It iterates 100,000 times, first 
selecting a random batch from the training set and then 
performing a forward pass to compute predictions (a forward 
pass is just the computation of the output from the input 
through all layers, applying weights and activation functions). 
Next, it calculates the loss by comparing the predictions 
against the true labels and conducts a backward pass to 
compute the gradients (a backward pass calculates and 
propagates gradients from the output back to the input, 
updating model weights based on loss differentiation). It then 
updates the model weights using the optimizer and 
periodically evaluates the model on a validation set to 
calculate the validation loss, without computing gradients. 
Finally, it prints the training and validation loss, enabling us to 
find trends. 

Evaluating the model 
Upon the first review of the results, the training data does not 
seem to have much consistency. There does not seem to be 
much stabilization and there is a lot of noise and variance as 
the loss keeps fluctuating with no general rate. The batch size 
was then switched to 64, and with this the model worked 
much better. With the learning rate set to 0.01, the batch size 
set to 64, and the number of iterations set to 100,000, the 
training loss seems to vary between 0.3 and 2.3, with great 
fluctuations in the training loss and with no trend coming 
down to its minimum loss. Contrastingly, the validation loss is 
consistently lower, between 0.198 and 0.200. We want this 
loss to be as minimal as possible.  

To visualize the training and the validation loss, we can write 
a short program to plot this information on a graph: 

 

With the current settings of a learning rate of 0.01, a batch size 
of 64 and the number of iterations set to 100000, the model 
produces a graph like the one attached below. It shows that the 
training loss is not consistent whatsoever, and has major 
fluctuations as the number of iterations progresses. The 
training loss does not become consistently lower, highlighting 
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that the model cannot find many links or patterns between the 
provided data for predicting the drag coefficient. The 
validation loss, however, starts off positively. It initially starts 
to decrease as the number of iterations increases, but then the 
validation loss decreases at an extremely low rate as the 
number of iterations increases. The validation loss decreases 
minimally over time and reaches a minimum of 0.198.  

 

However, we can vary factors like the learning rate and see 
what effect it has on the outcome. Changing the learning rate 
from 0.01 to 0.001 makes the optimization process more 
gradual and precise, theoretically leading to improved training 
stability and accuracy but at the cost of longer training time as 
well as potentially overshooting the minimum loss. Doing, 
this, we still receive similar results - the graph looks very 
similar to the previous graph. The training data loss still has 
very large fluctuations within a similar range as before; 
however, the validation loss is marginally less accurate as it is 
slightly higher compared to when the learning rate was 0.01 
(the lowest loss it outputs is 0.199).  The range of the 
validation loss is lower as the initial loss is lower compared to 
the previous graph.  

 

When further reducing the learning rate to 0.0001, the training 
loss as well as the validation loss both have a similar pattern, 
and the validation loss falls to the lowest of 0.197. When 
decreasing the learning rate even further to 0.00001, the 
training and validation loss, when plotted, produces a graph 
below. The training loss decreases as the number of iterations 
increases as well as is a bit more consistent. The validation 
loss, however, sees the biggest change; the validation loss 

reduces the most over time, having a much more prominent 
gradient function compared to the gradient functions of the 
other graphs. The validation loss decreases to the lowest of 
0.193. 

 

Decreasing the learning rate further to 0.000001 produces a 
graph below, where the training and validation loss are both 
relatively constant and do not change. The validation loss line 
does not change and stays constant at 0.202. This tells us that 
for this model with this specific data, a learning rate of 
0.00001 is the most ideal learning rate as it produces the 
lowest loss in predicting the coefficient of drag, which is our 
target.  

 

Now, we can adjust the number of iterations and keep 
everything else constant (batch size 64 and learning rate 
0.00001). When decreasing the number of iterations from 
100,000 to 10,000, the training loss is more consistent, 
however, there is still a lot of noise and variance in the 
training loss. The validation loss is much higher, with the 
lowest validation loss at 0.336. When further decreasing the 
number of iterations to 1000, the trends stay the same but the 
lowest validation loss comes to 0.224. There is no maximum 
number of iterations, but 100,000 is pretty high, and an 
iteration size above this would be too time-consuming (~10 
minutes). Testing at 1,000,000 iterations, the validation loss 
only comes down to a minimum of 0.199 which is quite 
inefficient.  

After testing the model with various hyperparameters, we can 
conclude that for predicting the drag coefficient of vehicles, 
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the optimal hyperparameters that produce the lowest loss of 
0.193 are a learning rate of 0.00001, a batch size of 64, and a 
number of iterations of 100000. This tells us that the model is 
fairly accurate in predicting the drag coefficient of vehicles. 
By being able to predict the coefficient of drag with just 
height, width, and frontal area, the model can be used by 
manufacturers and aerodynamicists during the early design 
stages of the car to “model all of the complex dependencies of 
drag on shape, inclination, and some flow conditions”34.  

Second model 
We can also test this model on completely different data; we 
can try to use population, GDP, and inflation to predict the 
yearly water used by a country. Below is a sample of the data 
for 4 out of 186 countries that will be used by the model. 

Country Yearly Water 
Used (m³, 

thousands of 
liters) 

Population GDP 
(nominal) 

Inflation 

Argentina 37780000000 45510318 632770000000 94.8 

Belgium 6005000000 11655930 578604000000 9.6 

India 761000000000 1417173173 3385090000000 6.7 

New 
Zealand 

5201000000 5185288 247234000000 7.2 

All data is from 2022. Yearly Water Used (m³, thousands of liters) taken from 
Worldometer35, Population and GDP (nominal) taken from Worldometer36, 
and Inflation taken from WorldData37.  
 
After setting up the model in the same way, we can analyze 
the results. After testing for the optimal hyperparameters by 
using the same process when finding them for the coefficient 
of drag prediction, the optimal hyperparameters found are a 
learning rate of 0.0001, a batch size of 64, and a number of 
iterations of 100000, we receive the results below.  

 
 

34 Benson, T. The Drag Coefficient; n.d. 
35 Worldometer. Water Use Statistics; n.d. 
36 Worldometer. GDP by Country; n.d. 
37 WorldData. Inflation rates in a global comparison; n.d. 

The training data for predicting the annual water consumption 
has much less consistency as compared to the training data for 
predicting the coefficient of drag. The range of results is much 
larger, generally ranging from 0.07 - 4.00. However, there are 
some very large spikes going all the way up to 6.5 and there 
does not seem to be much stabilization, and there is much 
more noise and variance as the loss keeps fluctuating. 
However, both the training loss and the validation loss 
decrease over time. Unlike the other model, the validation loss 
is higher than the minimum training loss, but the validation 
loss is much lower than that of the validation loss with the 
drag coefficient. There, the lowest validation loss was 0.193, 
however here the lowest validation loss is 0.0391. This is 
significantly lower, which tells us that the model can 
effectively predict with very little uncertainty the annual water 
consumption of a country given the factors of population, 
GDP, and inflation. The high accuracy in these predictions can 
help economists predict water consumption before official 
statistics are released, and help governments prepare policies 
and responses to the statistics.  

CONCLUSION 
The results show that the model can successfully predict the 
outcomes in two vastly different fields given factors not 
directly correlated to the outcome, although at different levels: 
the model can predict water consumption given some factors 
(population, GDP (nominal), and inflation) at a much higher 
accuracy and precision than predicting the coefficient of drag 
given some factors (height, weight, and frontal area). This 
could be due to various reasons, including a possibly more 
accurate data set (sources such as Worldmeter and WorldData 
are more accurate than sources such as EcoModder) and a 
greater feature relevance (features such as population are more 
directly linked to water consumption compared to features 
such as height to the coefficient of drag). The minimum loss 
when predicting the coefficient of drag is 0.193 which is 
nearly 5 times larger than the minimum loss when predicting 
the annual water consumption.  
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